lunes, 22 de septiembre de 2008

Resumen METALOGRAFÍA MICROSCOPICA

1.- METALOGRAFIA:Es la ciencia que estudia las características estructurales o constitutivas de un metal o aleación relacionándolas con las propiedades físicas y mecánicas.Entre las características estructurales están el tamaño de grano, el tamaño, forma y distribución de las fases que comprenden la aleación y de las inclusiones no metálicas, así corno la presencia de segregaciones y otras irregularidades que profundamente pueden modificar las propiedades mecánicas y el comportamiento general de un metal.Mucha es la información que puede suministrar un examen metalográfico. El principal instrumento para la realización de un examen metalográfico es el microscopio metalográfico, con el cual es posible examinar una muestra con aumentos que varían entre 50 y 2000.2.- OBJETIVO PRINCIPAL DE LA METALOGRAFIA:Es la realización de una reseña histórica del material buscando microestructura, inclusiones, tratamientos térmicos a los que haya sido sometido, microrechupes, con el fin de determinar si dicho material cumple con los requisitos para los cuales ha sidodiseñado; además hallaremos la presencia de material fundido, forjado y laminado. 3.- OPERACIONES A SEGUIR PARA PREPARAR UNA MUESTRA METALOGRAFICA:a) Corte: El tamaño de la muestra siempre que se pueda debe ser tal que su manejo no encierre dificultad en la operación. El corte mediante este método ocasiona superficies irregulares con valles excesivamente altos, dando como efecto más tiempo de aplicación de las técnicas de preparación de las muestras. Generalmente este tipo de corte es utilizado para extraer probetas de piezas muy grandes, para poder luego proceder con el corte abrasivo y adecuar la probeta a los requerimientos necesarios.-Corte por Disco AbrasivoEste tipo de corte es el más utilizado, ya que la superficie resultante es suave, y el corte se realiza rápidamente. Los discos para los cortes abrasivos, están formados por granos abrasivos (tales como óxido de aluminio o carburo de silicio), aglutinados con goma u otros materiales. Los discos con aglutinantes de goma son los más usados para corte húmedo; los de resina son para corte en seco.b) Montaje de muestras: Con frecuencia, la muestra a preparar, por sus dimensiones o por su forma, no permite ser pulida directamente, sino que es preciso montarla o embutirla en una pastilla. El material del que se componen estas puede ser Lucita (resina termoplástica) o Bakelita (resina termoendurecible).c) Desbaste: Después de montada la probeta, se inicia el proceso de desbaste sobre una serie de hojas de esmeril o lija con abrasivos más finos, sucesivamente. El proceso de desbaste se divide en 3 fases: Desbaste grosero, Desbaste intermedio y Desbaste final. Cada etapa de preparación de probetas metalograficas debe realizarse muy cuidadosamente para obtener al final una superficie exenta de rayas.-Desbaste GroseroEs el desbaste inicial, que tiene como objetivo planear la probeta, lo cual puede hacerse a mano y aun mejor con ayuda de una lijadora de banda. El papel de lija utilizado es de carburo de silicio con granos de 240 o papel de esmeril # 1. En cualquier caso, la presión de la probeta sobre la lija o papel de esmeril debe ser suave, para evitar la distorsión y rayado excesivo del metal.-Desbaste IntermedioSe realiza apoyando la probeta sobre el papel de lija o de esmeril, colocado sobre una mesa plana o esrneriladora de banda fija. En esta fase se utilizan los papeles de lija No. 600 ó de esmeril # 3/0. En todo caso, en cada fase del desbaste debe tomarse siempre en cuenta el sistema refrigerante. Se avanza y se facilita mucho las operaciones descritas utilizando una pulidora de discos, a las que se fija los papeles de lija adecuado en cada fase de la operación. d) Pulido:-Pulido finoLa última aproximación a una superficie plana libre de ralladuras se obtiene mediante una rueda giratoria húmeda cubierta con un paño cargado con partículas abrasivas seleccionadas en su tamaño. En éste sentido, existen muchos abrasivos, prefiriendo a gamma del oxido de aluminio para pulir metales ferrosos, los basados en cobre u oxido de cerio para pulir aluminio, magnesio y sus aleaciones. Otros abrasivos son la pasta de diamante, oxido de cromo y oxido de magnesio. La selección del paño para pulir depende del material que se va a pulir y el propósito del estudio metalográfico.-Pulido electrolíticoEs una alternativa de mejorar al pulido total pudiendo reemplazar al fino pero muy difícilmente al pulido intermedio. Se realiza colocando la muestra sobre el orificio de la superficie de un tanque que contiene la solución electrolítica previamente seleccionada, haciendo las veces de ánodo. Como cátodo se emplea un material inerte como platino, aleación de níquel, cromo, etc. Deben controlarse el tiempo, el amperaje, el voltaje y la velocidad de rotación del electrolito para obtener un pulido satisfactorio. Muchas veces después de terminado este pulido la muestra queda con el ataque químico deseado para la observación en el microscopio.e) Ataque: Permite poner en evidencia la estructura del metal o aleación. Existen diversos métodos de ataque pero el más utilizado es el ataque químico. El ataque químico puede hacerse sumergiendo la muestra con cara pulida hacia arriba en un reactivo adecuado, o pasar sobre la cara pulida un algodón embebido en dicho reactivo. Luego se lava la probeta con agua, se enjuaga con alcohol o éter y se seca en corriente de aire. f) Observacióng) Fotomicrografía4.- DESCRIPCION DEL MICROSCOPIO METALURGICO:En comparación al microscopio biológico el microscopio metalúrgico difiere en la manera en que la luz es proyectada. Como una muestra metalográfica es opaca a la luz, la misma debe ser iluminada por luz reflejada. Un haz de luz horizontal de alguna fuente de luz es reflejado, por medio de un reflector de vidrio plano, hacia abajo a través del objetivo del microscopio sobre la superficie de la muestra. Un poco de esta luz incidente reflejada desde la superficie de la muestra se amplificará al pasar a través del sistema inferior de lentes, el objetivo, y continuará hacia arriba a través del reflector de vidrio plano; luego, una vez más lo amplificará el sistema superior de lentes, el ocular. El poder de amplificación inicial del objetivo y del ocular está generalmente grabado en la base del lente. Cuando es utilizada una combinación particular de objetivo y ocular y una longitud adecuada de tubo, la amplificación total es igual al producto de las amplificaciones del objetivo y ocular. La utilidad del microscopio metalúrgico puede ser ampliada debido a la incorporación de diversos aparatos auxiliares, como son los que permiten observar aspectos estructurales que no son visibles en condiciones normales. Puesto que el ojo humano es insensible a las diferencias de fase, debe incorporarse al microscopio un aparato óptico especial. Las diferencias de fases causados por variaciones extremadamente pequeñas al nivel de microestructuras, se transforman más tarde, en diferencias de intensidad en la imagen observada, revelando de esta forma aspectos invisibles bajo iluminación ordinaria.5.- TECNICAS DE PREPARACION METALOGRAFICAS:Preparación Normal o Tradicional Esmerilado burdo o tosco: La muestra debe ser de un tamaño de fácil manipulación. La muestra plana o dura puede esmerilarse sobre una lija de banda, manteniendo la muestra fría sumergiéndola frecuentemente en agua durante la operación de esmerilado, evitando alterar su estado con el calor que se produce en el acto de pulido y asi mantener una misma fase. En todas las operaciones de esmerilado, la muestra debe moverse en sentido perpendicular a la ralladura existente. El esmerilado, continúa hasta que la superficie quede plana, y todas las ralladuras debidas al corte manual o al disco cortador no sean visibles, emulando la superficie de un espejo.Montaje: Este paso se realiza en el caso que las muestras sean pequeñas o de difícil manipulación en las etapas de pulido intermedio y final. Piezas pequeñas como tornillos, tuercas, muestras de hojas metálicas, secciones delgadas entre otros, deben montarse en un material adecuado o sujetarse rígidamente en una monta mecánica. La resina que se utiliza para fijar la probeta, se aplica a la probeta por medio de temperatura, es decir, es una resina termo-fijadora, comúnmente empleada para montar muestras es la baquelita. La temperatura y presión aplicada producen una fuerte adhesión de la baquelita a la muestra, proporcionando un tamaño uniforme convenientes para manipular las muestras en operaciones de pulido posteriores.Pulido Intermedio: Luego del paso anterior, la muestra se pule sobre una serie de hojas de esmeril o lijas que contienen abrasivos finos. Antes de pulir con la siguiente lija se debe girar en 90º la muestra, a fin de eliminar el rayado realizado con la lija anterior. Las operaciones de pulido intermedio con lijas de esmeril se hacen en húmedo; sin embargo, en ciertos casos, es conveniente realizar este paso en seco ya que ciertas aleaciones se corroen fácilmente por la acción del agua. Pulido Fino: Esta etapa representa una de los pasos de mayor cuidado por parte del preparador de muestras, ya que en muchas ocasiones en la superficie del metal se han formado dobles caras o planos y que por supuesto por ningún motivo pueden ser utilizadas para el pulido fino, sino se remedia tal defecto superficial. El pulido fino se realiza mediante un disco giratorio cubierto con un paño especial, húmedo, cargado con partículas abrasivas, como es el oxido de aluminio para pulir materiales ferrosos y de los base cobre, y oxido de cerio para pulir aluminio, magnesio y sus aleaciones. La selección del paño para pulir depende del material y del propósito del estudio metalográfico. Preparación ElectroquímicaLa técnica por pulido electroquímico requiere al igual que el caso anterior, la selección de una probeta de un tamaño apropiado para luego utilizar el electropulido. Este método consiste en una disolución electroquímica de la superficie del metal que produce un aislamiento y pulido, se aplica por lo general a muestras pequeñas. Esta parte constante de la curva indica que corresponde al período de formación de la superficie lisa y brillante. Las probetas se lavan y luego se atacan por el método usual o bien se puede utilizar un ataque electrolítico que consiste en reducir la intensidad de corriente sin cambiar el electrolito inicial.6.-CONSTITUYENTES METALOGRÁFICOS:En los aceros, el carbono se encuentra en general, o combinado en forma de cementita o disuelto, rara vez en forma de grafito. Los constituyentes estructurales de equilibrio de los aceros son:Austenita: Se define como una solución sólida de carbono en hierro gamma. Solo es estable a temperaturas superiores a 723 ºC, desdoblándose por reacción eutectoide, a temperaturas inferiores, en ferrita y cementita. Solo puede aparecer austenita a temperatura ambiente en los aceros austeníticos, en este caso la austenita si es estable a temperatura ambiente. Es deformable como el hierro gamma, poco dura, presenta gran resistencia al desgaste, es magnética, es el constituyente más denso de los aceros y no se ataca con reactivos. Presenta red cristalográfica cúbica centrada en las caras (c.c.c.), con los siguientes parámetros de red, a=3,67 A y d=2,52 A.Ferrita: Este constituyente está formado por una solución sólida de inserción de carbono en hierro alfa. que figuran en los aceros, bien como impurezas, bien como elementos de aleación. La ferrita se presenta en los aceros hipoeutectoides como constituyente y mezclada con la cementita entra a formar parte de la perlita. Si el acero es muy pobre en carbono, su estructura está formada casi en su totalidad por granos de ferrita cuyos límites pueden revelarse fácilmente con el microscopio, después de un ataque con ácido nítrico diluido. Los granos son equiaxiales. Su estructura está constituida por láminas alternadas de ferrita y cementita, siendo el espesor de las láminas de ferrita superior al de las de cementita, estas últimas quedan en relieve después del ataque con ácido nítrico, lo cual hace que en la observación microscópica se revelen por las sombras que proyectan sobre las láminas de ferrita. La perlita es más dura y resistente que la ferrita, pero más blanda y maleable que la cementita. Se presenta en forma laminar, reticular y globular.Cementita: Es un constituyente que aparece en fundiciones y aceros. Es el carburo de hierro, de fórmula Fe3C, que cristaliza en el sistema ortorrómbico. A bajas temperaturas es ferromagnético y pierde esta propiedad a 212 ºC (punto de Curie). Se puede presentar en forma reticular, laminar y globular.Bainita: Es el constituyente que se obtiene en la transformación isotérmica de la austenita cuando la temperatura del baño de enfriamiento es de 250 a 500°C. Se diferencian 2 tipos de estructuras: la Bainita superior de aspecto arborescente formada a 500-580°C, compuesta por una matriz ferrítica conteniendo carburos y la Bainita inferior, formada a 250-4000 ºC tiene un aspecto similar a la martensita y esta constituida por agujas alargadas de ferrita que contienen delgadas placas de carburos. Al realizar el calentamiento la martensita experimenta una serie de transformaciones y en el intervalo comprendido entre 400 y 650 ºC la antigua martensita ha perdido tanto carbono, que se ha convertido ya en ferrita. Martensita: Es una solución sólida, intersticial, sobresaturada de carbono en hierro alfa. Es el constituyente estructural de temple de los aceros y su microestructura se presenta en forma de agujas cruzadas. Los átomos de hierro están como en la ferrita, en los vértices. Presenta una red tetragonal. Sus características mecánicas son resistencia a la tracción entre 170-250 Kg/mm2, dureza HRc entre 50-60, alargamiento de 0,5 % y es magnética.7.- EXAMEN MICROGRAFICO Y MACROGRAFICOLa forma mas sencilla de realizar el estudio, es examinando las superficies metálicas a simple vista, logrando determinar de esta forma las características macroscópicas. Este examen se denomina macrográfico y de ellos se extraen datos sobre los tratamientos mecánicos sufridos por el material, es decir, determinar si el material fue trefilado, laminado, forjado, entre otros, comprobar la distribución de defectos como grietas superficiales, de forja, rechupes, partes soldadas. Así mismo, los exámenes macroscópicos se realizan generalmente sin preparación especial, pero a veces es necesaria una cuidadosa preparación de la superficie para poner de manifiesto las características macroscópicas. En macroscopía, se utilizan criterios para el tipo de corte a realizar (transversal o longitudinal) para extraer la muestra dependiendo el estudio a realizar, por ejemplo:• Corte transversal: Naturaleza del material, homogeneidad, segregaciones, procesos de fabricación, y otros.• Corte longitudinal: Proceso de fabricación de piezas, tipo y calidad de la soldadura y otros.Por otra parte, existe otro tipo de examen que es el examen micrográfico, que representa una técnica más avanzada y se basa en la amplificación de la superficie mediante instrumentos ópticos (microscopio) para observar las características estructurales microscópicas (microestructura). Este tipo de examen permite realizar el estudio o controlar el proceso térmico al que ha sido sometido un metal, debido a que los mismos colocan en evidencia la estructura o los cambios estructurales que sufren en dicho proceso. Los estudios ópticos microscópicos producen resultados que no solo son útiles a los investigadores sino también a los ingenieros. El examen de la microestructura es muy útil para determinar si un metal o aleación satisface las especificaciones en relación a trabajos mecánicos anteriores, tratamientos térmicos y composición general. La microestructura es un instrumento para analizar las fallas metálicas y para controlar procesos industriales. Para un estudio de ella se necesita una preparación aún más cuidadosa de la superficie. Esta experiencia delinea una forma de preparar muestras pequeñas de acero blando) con el fin de realizar un examen metalográfico. Los pasos a seguir en el procedimiento de preparación son los mismos para todos los materiales difiriendo solo las herramientas de corte y el grado de finura de los papeles de esmeril según la dureza del material. El reactivo de ataque a utilizar depende del tipo de aleación. Los ensayos micrográficos se realizan sobre muestras o probetas de los materiales que han de ser sometidos a estudio, preparamos una superficie que luego de ser pulida convenientemente, se ataca con reactivos químicos apropiados a la finalidad de la determinación a realizar. Como se ha indicado, el estudio en si se hace sobre superficies convenientemente preparadas de dichas muestras o probetas. Esta preparación consiste en llegar a un pulido casi perfecto, para lo cual se parte de un desbaste que podríamos llamar grueso, con el fin de aplanar la superficie, lo que se consigue con un ajuste a lima o con el auxilio de devastadoras mecánicas de diseño especial. Por lo general, están constituidos por ácidos o álcalis diluidos en alcoholes, agua o glicerina. Y su elección se hará de acuerdo con la naturaleza química de la estructura a destacar en la muestra. Por otra parte, con la observación de las estructuras micrográficas y por comparación con microfotografías, es posible deducir el contenido aparente de carbono, finura y variedad de los componentes, clasificación de aceros, reconocer las inclusiones por defectos de fabricación (óxidos, silicatos, oxisulfuros, silicoaluminatos) EXAMEN METALOGRAFICOS A LAS PROBETAS DE SAE 1015 Y SAE 1045Muestra 1Muestra 2Según como vemos en las micrografías obtenidas de los exámenes, reafirman que la muestra 1 es un acero SAE 1015 según la distribución de la perlita y la ferrita. Y las micrografías de la muestra 2 reafirman que estamos trabajando con un acero SAE 1045, así lo muestra el contenido de ferrita y de la perlita laminar. 8.-CORTADORAS METALOGRÁFICASIB-FINOCUTCortadora metalográfica de precisión de baja velocidad. • Potencia del motor 40 W. • Velocidad variable 40 - 450 rpm cabezal micrométrico, mordaza universal, apagado automático al finalizar el proceso de corte. • Sistema de refrigeración incorporado. • Disponibles diversas mordazas para distintas aplicaciones. • Disco de corte: diámetro 125 mm.• Cabezal micrométrico: 0 - 25 mm.IB-MINICUTLa cortadora metalográfica más compacta diseñada para cortar piezas de pequeño tamaño. • Mordazas de accionamiento rápido. Interruptor de seguridad.• Sistema de recirculación del refrigerante de 55 l. • Máxima capacidad de corte: diámetro 60 mm.• Potencia del motor: 1,5 CV• Disco de corte: diámetro 250 mm.IB-METACUTCortadora metalográfica diseñada para múltiples aplicaciones. • Cámara de corte iluminada. • Campana de protección de fibra de vidrio con ventana para controlar el proceso de corte. • Sistema de frenado electrónico.• Sistema de recirculación del refrigerante de 55 l. • Máxima capacidad de corte: diámetro 75 mm.• Potencia del motor: 4 CV• Disco de corte: diámetro 250 mm.• Mesa de corte: 210 x 210 mm.IB-SERVOCUTCortadora metalográfica automática controlada por microprocesador. • Diseñada para realizar cortes eficaces y precisos en todo tipo de piezas. • Sistema de frenado electrónico. • Velocidad de avance programable. • Técnica de corte por impulsos. • Sistema de recirculación del refrigerante de 55 l. • Máxima capacidad de corte: diámetro 75 mm.• Potencia del motor: 4 CV• Disco de corte: diámetro 250 mm.• Mesa de corte: 210 x 210 mm.• Aire comprimido: 6 bar.• Sistema de frenado electrónico. • Mesa de corte con ranuras en T y doble mordaza de accionamiento rápido. • Base de fundición. • Campana de protección de fibra de vidrio desde la que se controla el proceso de corte. • Sistema de recirculación de 85 l. • Armario base integrado. • Máxima capacidad de corte: diámetro 120 mm.• Potencia del motor: 6,3 CV• Disco de corte: diámetro 350 mm.• Mesa de corte: 350 x 350 mm.IB-ROBOCUT-AGran cortadora metalográfica automática con microprocesador de control y operación hidroneumática. • Mesa de corte con ranuras en T y doble mordaza de accionamiento rápido ajustable para aflojar diversos tipos y tamaños de piezas. • Fuerza de corte y avance programables. • Corte por impulsos. • Sistema de recirculación de 85 l. • Armario base integrado. • Máxima capacidad de corte: diámetro 120 mm.• Potencia del motor: 6,3 CV• Disco de corte: diámetro 350 mm.• Mesa de corte: 350 x 350 mm.• Aire comprimido: 6 bar9.- PRENSAS METALOGRÁFICASIB-METAPRESSPrensa hidráulica para montaje en caliente. • Carcasa de fibra de vidrio anticorrosión. • Sistema automático de refrigeración por agua. • Señal acústica al finalizar el proceso.• Temperatura máxima 200 ºC.• Potencia de calentamiento: 1400 W• Fuerza máxima: 50 KN.IB-DIGIPRESSPrensa de montaje por composición en caliente controlada por microprocesador. Posee una amplia pantalla digital que permite programar todos los parámetros de la secuencia de moldeo: presión, temperaturas de calentamiento y enfriamiento, tiempo de proceso, precarga, precalentamiento. • Operación automática controlada por microprocesador.• Fuerza máxima: 50 KN.• Temperatura máxima: 250º C.10.- PULIDORAS METALOGRÁFICASSERIE IB-GRIPO…Las pulidoras de la serie GRIPO son idóneas para la preparación de probetas metalográficas en laboratorios de tamaño medio. • Base ligera anti-corrosión. • Disponibles en versión de 1 y 2 platos. • Velocidad constante o variable con pantalla digital. • Interruptor de protección de sobrecarga del motor • GRIPO I: 1 plato, velocidad fija 300 rpm, platos 200 / 250 mm.• GRIPO IV: 1 plato, velocidad variable 50 - 600 rpm, platos 200 / 250 mm.• GRIPO 2: 2 platos, velocidad fija 300 rpm, platos 200 / 250 mm.• GRIPO 2V: 2 platos, velocidad variable 50 - 600 rpm, platos 200 / 250 mm.• GRIPO 2M: 2 platos, 2 velocidades fijas 150 / 300 rpm, platos 200 / 250 mm.• GRIPO 300-1V: 1 plato, velocidad variable 50 - 600 rpm, plato 300 mm.Todos los parámetros del proceso como frecuencia, duración de la dispensación, selección de fluido, se controlan directamente desde el teclado del panel frontal.IB-DIGISETDiseñada para preparar probetas de forma manual o automática. • Microprocesador de control para ajustar los parámetros del proceso. • Velocidad variable 50 - 600 rpm con pantalla digital. • Teclado de control en el panel frontal que permite controlar la velocidad del plato, encendido y apagado y el agua. • Interruptor de protección de sobrecarga del motor. • Una barra de luces muestra la carga del motor.IB-DIGIMATEs un cabezal programable con microprocesador de control, diseñado para conectarlo a las pulidoras de la serie DIGISET. El cabezal se utiliza para la preparación automática de grandes cantidades de probetas. Todos los parámetros con fuerza, tiempo del ciclo, velocidad del plato, sentido de giro y tipo de fluido pueden programarse y guardarse en la memoria. Al finalizar el proceso, una señal acústica informa al operario.IB-DIGIPREPDIGIPREP es un sistema automático de preparación de probetas formado por pulidoras de la serie DIGISET, el cabezal DIGIMAT y el dispensador DISPOMAT. El sistema puede memorizar hasta 100 programas. IB-MET-2000Este microscopio está pensado especialmente para distinguir y analizar las estructuras de superficies opacas, siendo, por tanto, un instrumento fundamental para la investigación en metalografía, controles de calidad de materiales, industria metalúrgica, mineralogía, etc. • Microscopio con portaoculares triocular o binocular, tipo Siedentopf.• Revólver cuádruple invertido, montado sobre cojinetes de bolas y resorte de muelles.• Ajuste fin de carrera para protección de la muestra.11.- METODOS PARA DETERMINAR EL TAMAÑO DE GRANOTAMAÑO DE GRANOUna de las mediciones microestructurales cuantitativas más comunes es aquella del tamaño de grano de metales y aleaciones. Numerosos procedimientos han sido desarrollados para estimar el tamaño de grano, estos procesos están sintetizados en detalle en la norma ASTM E112.Algu nos tipos de tamaño de grano son medidos, tamaño de grano de la ferrita y tamaño de grano de la austenita. Los principales métodos para la determinación del tamaño de grano recomendados por la ASTM (American Society for Testing and Materials) son:• Método de Comparación• Método de Planimétrico• Método de Intersección -Método de comparaciónMediante el método de prueba y error se encuentra un patrón que coincide con la muestra en estudio y entonces se designa el tamaño de grano del metal por el número correspondiente al número índice del patrón mixto; se tratan de manera semejante, en cuyo caso se acostumbra especificar el tamaño de granos en términos de dos números que denota el porcentaje aproximado de cada tamaño presente. El método de comparación es más conveniente y bastante preciso en muestras de granos de ejes iguales.El número de tamaño de grano “n” puede obtenerse con la siguiente relación: N=2 n -1-Método planimétricoEs el más antiguo procedimiento para medir el tamaño de grano de los metales. Se cuenta el número de granos' que están completamente dentro del círculo n1 y el número de granos que interceptan el circulo n2 para un conteo exacto los granos deben ser marcados cuando son contados lo que hace lento este método.El tamaño de grano se estima contando por medio de una pantalla dividida de vidrio, o por fotomicrografía o sobre la propia muestra, el numero de granos interceptados por una o más líneas restas. Los granos tocados por el extremo de una línea se cuentan solo como medios granos. La longitud de líneas en milímetro, dividida entre el número promedio de granos interceptados por ella da la longitud de intersección promedio o diámetro de grano. PREPARACION DE PROBETAS METALOGRAFICAS OBJETIVOSObtener una superficie pulida a espejo y atacada de probetas de acero, fundiciones de hierro y no ferrosos.La parte más importante de la metalografía es el examen microscópico de una probeta pulida y atacada empleando aumentos que con el microscópio óptico oscilan entre 100 y 2000X.El examen microscópico proporciona información sobre la constitución del metal o aleación, pudiéndose determinar características tales como forma, tamaño, y distribución de grano, inclusiones y microestructura metalográfica en general. La microestructura puede reflejar la historia completa del tratamiento mecánico o térmico que ha sufrido el metal.La preparación defectuosa de las probetas puede arrancar las inclusiones importantes, destruir los bordes de grano, revenir un acero templado o en general, originar una estructura superficial distorsionada que no guarda ninguna relación con la superficie representativa y características del metal.El análisis metalográfico comprende las siguientes etapas:1. Selección de la muestra.2. Toma o corte de la muestra.3. Montaje y preparación de la muestra.4. Ataque de la muestra.5. Análisis microscópico.6. Obtención de microfotografías o video grabaciones.El tamaño óptimo de la probeta debe ser tal que pueda sostenerse con la mano durante su preparación, (una pulgada de diámetro por una pulgada de altura).El corte de la probeta puede realizarse con seguetas, cortadora de cinta o disco abrasivo, teniendo la precaución de evitar el calentamiento que puede ocasionar alteraciones estructurales, por lo tanto no es conveniente realizar el corte de la muestra con soplete oxiacetilénico.El montaje de estas muestras se hace en materiales plásticos sintéticos como bakelita, lucite, o acrilico isotérmico que después del moldeo son relativamente duros y resistentes a la corrosión y no causan empastamiento de los papeles abrasivos durante el desbaste y pulido.El montaje consiste en comprimir un plástico fundido sobre la muestra metálica y dejar enfriar el sistema bajo presión hasta la solidificación del plástico o resina sintética.La preparación de la probeta consiste en el desbaste y el pulido.El desbaste es la operación siguiente al corte y al montaje de la probeta y se efectúa en una desbastadora de cinta rotativa o sobre papeles abrasivos de diferentes grados, colocados sobre discos giratorios.Al pasar de un abrasivo a otro, debe girarse la probeta 90 grados y desbastar hasta que se borren por completo las huellas del abrasivo anterior, teniendo siempre el cuidado de lavar la probeta con agua abundante. Una presión excesiva sobre el papel abrasivo puede causar rayas profundas y difíciles de eliminar posteriormente, además se provoca una distorsión intensa sobre el metal de la superficie, alterando el aspecto de la estructura. Esta distorsión no se puede evitar completamente pero puede reducirse mediante técnicas adecuadas de desbaste y pulido.Conviene emplear un papel nuevo para cada probeta, los papeles usados se emplean para finalidades específicas porque sus partículas abrasivas desgastadas tienden a producir distorsión del metal superficial, además si sobre un papel se ha desbastado un acero templado, pueden quedar sobre él partículas muy finas y producir rayas profundas y anchas al emplearlo después para preparar un material blando como latón o aluminio.También debe tenerse en cuenta que la superficie opuesta de la probeta debe ser paralela para facilitar el soporte en el microscópio.Al final del desbaste, deben lavarse con agua abundante tanto las probetas como las manos del operador para evitar que las partículas del abrasivo o del metal en la etapa del desbaste pase a las pulidoras lo cual los haría inservibles, además en algunos tipos de aleaciones como las de aluminio, la corriente de agua evita el ennegrecimiento de la superficie.El pulido tiene por objeto, eliminar las rayas finas producidas en la última operación del desbaste y conseguir una superficie sin rayas y con alto pulimento a espejo.El éxito del pulido y el tiempo empleado en la operación, depende en gran parte del cuidado con que se haya realizado el desbaste. Si una probeta tiene rayas profundas que no se han eliminado en las últimas operaciones de desbaste, no podrán ser eliminadas durante el pulido con pérdida de tiempo y trabajo.La forma de realizar el pulido es, apoyando la cara desbastada de la probeta sobre un paño embebido con una suspensión de abrasivo y fijado a un disco que gira accionado por un motor.Como abrasivo puede usarse una suspensión acuosa de alúmina, óxido de cromo, óxido de hierro, óxido de magnesio, o para materiales muy duros una suspensión de polvo de diamante en aceite mineral. Los discos pueden ser de bronce, aluminio o acero, con la cara superior perfectamente pulida y su velocidad de giro entre 250 y 500 r.p.m.La presión a aplicar sobre la probeta, depende de la dureza de la aleación y debe disminuirse a medida que avanza el pulido, deberá ser tal que se logre hacer desaparecer en unos pocos minutos las rayas del último papel (600) cuidando de no excederse en la presión por el peligro de desgarramiento del paño.Durante la operación del pulido, la probeta deberá desplazarse en la dirección del radio, desde el borde hasta el centro del disco.Debe lavarse la probeta en un chorro de agua caliente, secar con la ayuda de un secador, sin tocar la cara pulida, enjuagarla con alcohol y secarla finalmente con aire seco o caliente. La combinación adecuada de estas variables, permitirá alcanzar un óptimo pulido, aunque difícilmente se logre evitar algo de distorsión; para eliminar esta última, no queda otro recurso que el de ataque y pulido alternados.La observación microscópica de la probeta pulida permite reconocer la presencia de inclusiones no metálicas como sulfuros, silicatos, aluminatos, óxidos, microporosidades. Antes de atacar la probeta debe desengrasarse con alcohol y secarse con aire frío o caliente.Para el ataque, se toma la probeta con la pinza y se sumerge con la cara pulida hacia abajo en el reactivo de ataque contenido en el cristalizador. Se vuelve a pulir y se repite la operación descrita anteriormente manteniendo sucesivamente la probeta sumergida durante 2, 10, 20, 40 y 80 segundos, registrando el campo observado después de cada ataque. Mediante el ataque es posible poner de manifiesto el tamaño, forma y distribución del grano (fases o microconstituyentes), las heterogeneidades en la estructura y las segregaciones. Algunos de los reactivos de ataque son los siguientes:Acido pícrico (picral)4 g. de ácido pícrico cristalizado,100 cm3, de alcohol etílico al 95%Utilizable con todos los aceros aleados, aceros especiales y fundición gris, así como para estructuras particularmente finas. Acido nítrico (nital)4 cm3 de ácido nítrico concentrado (d= 1,4)100 cm3, de alcohol etílico al 95%Resalta los diversos constituyentes estructurales y el contorno de los granos de los aceros no aleados. Agua regia glicerinada10 cm3 de ácido nítrico concentrado (d = 1,4)30 cm3 de ácido clorhídrico (d = 1,19)30 cm3 de glicerina bidestiladaPone de manifiesto las estructuras de los aceros especiales resistentes al calor y a la corrosión y de las aleaciones de Ni-Cr. Puede calentarse la probeta en agua hirviendo y también puede utilizarse el agua regia caliente.Picrato sódico2 g de ácido pícrico cristalizado100 cm 3 de solución acuosa de hidrato sádico a 25%Descubre la cementita y los carburos complejos en los aceros especiales.Debe usarse la solución recién preparada e hirviendo.Ferricianuro potásico alcalino10 g. de ferricianuro potásico10 g. de hidrato sódicolOO cm3, agua destilada.Ácido fluorhídrico0,5 cm3 de ácido fluorhídrico al 40%99,5 cm3, de agua destilada.Reactivo de uso general para mostrar la microestructura del acero. Ácido sulfúrico20 cm3, de ácido sulfúrico (d = 1,84)80 cm3, de agua destilada.Pone de manifiesto los compuestos conteniendo hierro. Se aplica sumergiendo la probeta durante 30 segundos en el reactivo a 700C, y enfriándo bruscamente en agua.Reactivo triácido1 cm3 ,de ácido fluorhídrico al 40%1,5 cm3, de ácido clorhídrico (d = 1.19)2,5 cm3, de ácido nítrico (d = 1,41)95 cm5. de agua destilada.Descubre los granos de las aleaciones conteniendo cobre y de las aleaciones A1-Zn-Mg. Se aplica por inmersión durante 5 a 20 segundos. Después del ataque se lava con agua caliente y se seca a chorro de aire. No debe eliminarse el depósito formado sobre la superficie.Ácido fosfórico40 cm3, de ácido fosfórico a 75%60 cm3, de agua destilada.Para el ataque del cobreSolución al 10% de persulfato amónicoSolución al 3% de agua oxigenada y amoníaco concentrado.Solución al 10% de ácido nítrico.Reactivo al ácido nítrico50 cm3, de ácido nítrico25 cm3, de ácido acético glacial25 cm3 , de agua destilada.Apropiado para el bronce de aluminioEl microscopio metalográfico está formado por: Banco óptico, aparato para la iluminación de la probeta, objetivo, ocular para la observación directa y cámara fotográfica; el principio de funcionamiento es análogo al microscopio de Le Chatelier, con un arreglo tal que permite observar la luz reflejada por la superficie opaca del metal.El aumento total (X) del microscopio, está dado por el producto del aumento del ocular y el aumento del objetivo.En el microscopio Neophot-2:Aumento del objetivo: 8X 1OX 12.5X 16X 20XAumento del ocular: 2.5X 6.3X 12.5X 16X 25X 40X 50X 100XPulir y atacar probetas de:-Acero 1020 y 1060 AISI bonificado.-Fundición de hierro gris, nodular y blanca.-Aluminio y bronce.

1 comentario:

RENAN AVILA dijo...

Tiene 10/10 en su tarea.